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Reasoning on RDF 

• Semantic Web: machines can “reason” on web data to infer 
new knowledge 

 

• Reasoning can be performed by applying standardizes rules: 
 

  if <a type B> 
  and <B subclassOf C> 
  then <a type C> 

 

• RDFS ruleset: ~13 rules 

• OWL pD*: ~23 rules 

• OWL RL ruleset: ~78 rules 

 

Reasoning
Engine

Q: "Which drugs have side-
effects discovered after trials?"

A: "Drug A after trial_X at location_L"
    "Drug B after trial_W at location_Y"
    ...

http://www.aers.data2semantics.org

Side-effects 

treatments 

and drugs

List 5000 
FDA-

approved 
drugs

http://drugbank.ca
 Data on medical 

trials, etc.

http://www.linkedct.org

http://www.geonames.org

Data about 

10M 

geographical 

places

Rule1, Rule2, etc.

Reasoning on RDF 

 

 

 

 

 

 

 

 

 

 

• This is not a problem. We know how to do this. 

 

The problem of scale 

 

• However, the Web is a bit larger than four websites… 
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2009 2010 

2011 The problem of scale 

 

• However, the Web is a bit larger than four websites… 

 

• Current LinkedDataCloud size (updated 2011): ~20 billion facts 

 

• Google Knowledge’s Graph: 25 billions of formalized facts about 
billions of items. Volume is doubling every year 

 

• Expected outcome of OpenPhacts (large project with pharma 
companies): 20 - 50 billion triples, over 25 million mappings, over 
20 data sources  

 

 

 

 

1 triple: 
1 Triple = 1 Golf ball 5 Triples 
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10 Triples 107 Triples Suez Canal 

Denny Vrandečić – AIFB, Universität Karlsruhe (TH)                                                       14                                       http://www.aifb.uni-karlsruhe.de/WBS 

108 Triples Moon 

Denny Vrandečić – AIFB, Universität Karlsruhe (TH)                                                       15                                       http://www.aifb.uni-karlsruhe.de/WBS 

~109 Triples Earth 

Denny Vrandečić – AIFB, Universität Karlsruhe (TH)                                                       16                                       http://www.aifb.uni-karlsruhe.de/WBS 

~1010 Triples ≈ 1 triple per web-page 

Jupiter 

Denny Vrandečić – AIFB, Universität Karlsruhe (TH)                                                       17                                       http://www.aifb.uni-karlsruhe.de/WBS 

 

~1011 Triples 
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~1014 Triples 

Denny Vrandečić – AIFB, Universität Karlsruhe (TH)                                                       19                                       http://www.aifb.uni-karlsruhe.de/WBS 

 

 

 

• “How do we reason on such a scale?” 

Problems and challenges 

• One machine is not enough to store and process the Web  

 

 

 

 

• We must distribute data and computation 

• What architecture? 
• Several architectures of supercomputers 

• SIMD (single instruction/multiple data) processors, like graphic cards 

• Multiprocessing computers (many CPU shared memory) 

• Clusters (shared nothing architecture) 

• Algorithms depend on the architecture 

• We focus on the implementation on clusters 

Problems and challenges 

• In a distributed environment the increase of performance 
comes at the price of new problems that we must face: 

• Load balancing 

• High I/O cost 

• Programming complexity 

Problems and challenges: load 
balancing 
• Cause: In many cases (like reasoning) some data is needed 

much more than other (e.g. schema triples) 

• Effect: some nodes must work more to serve the others. This 
hurts scalability 

 

Problems and challenges:  
high I/O cost 
• Cause: data is distributed on several nodes and during reasoning 

 the peers need to heavily exchange it 

• Effect: hard drive or network speed become the performance 
bottleneck 
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Problems and challenges: 
programming complexity 
• Cause: in a parallel setting there are many technical issues to 

             handle 

• Fault tolerance 

• Data communication 

• Execution control 

• Etc. 

• Effect: Programmers need to write much more code in order to 
execute an application on a distributed architecture 

 

What we did 

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE 

 

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE 

 

 

 

What we did 

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE 

 

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE 

 

 

 

WebPIE 

• WebPIE is a forward reasoner that uses MapReduce to execute the 
reasoning rules 

• All code, documentation, tutorial etc. is available online. 

 

 

• WebPIE algorithm: 

• Input: triples in N-Triples format 

• 1) Compress the data with dictionary encoding 

• 2) Launch reasoning  

• 3) Decompress derived triples 

• Output: triples in N-Triples format 

 

 

1st step: 
compression 

2nd step: reasoning 

http://cs.vu.nl/webpie/  

WebPIE: Overview 
 

• RDFS reasoning 

• Set of 13 rules 

• All rules require at most one join between a  
“schema” triple and  an “instance” triple 

• OWL reasoning 

• Logic more complex => rules more difficult 

• The ter Horst fragment (pD*) provides a set of 23 new rules 

• Some rules require a join between instance triples 

• Some rules require multiple joins 

 

WebPIE: Overview 
 

• RDFS reasoning 

• Set of 13 rules 

• All rules require at most one join between a  
“schema” triple and  an “instance” triple 

• OWL reasoning 

• Logic more complex => rules more difficult 

• The ter Horst fragment (pD*) provides a set of 23 new rules 

• Some rules require a join between instance triples 

• Some rules require multiple joins 

 

http://systrap.com/
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WebPIE: RDFS reasoning 

• How can we apply a reasoning rule with MapReduce? 

if  a rdf:type B 

and B rdfs:subClassOf C 

then a rdf:type C 

WebPIE: RDFS reasoning 

• Such straightforward way does not work 

• Load balancing 

• Duplicates derivation 

• etc. 

• Three main optimizations 

1. Rules are applied in a specific order 

2. Schema triples are replicated in main memory 

3. Joins are performed in the reduce function and use the map 
function to generate less duplicates 

WebPIE: Overview 
 

• RDFS reasoning 

• Set of 13 rules 

• All rules require at most one join between a “schema” 
triple and  an “instance” triple 

• OWL reasoning 

• Logic more complex => rules more difficult 

• The ter Horst fragment (pD*) provides a set of 23 new rules 

• Some rules require a join between instance triples 

• Some rules require multiple joins 

 

WebPIE: OWL reasoning 

• RDFS optimizations are not enough. New ones are needed to 
deal with the more complex rules 

• We will explain only one: 

• Example: 

 

 

• This rule is problematic because 

• Need to perform join between instance triples 

• Every time we derive also what we derived before 

• Solution: we perform the join in the “naïve” way, but we only 
consider triples on a “specific” position 

 

if  <p type TransitiveProperty> 

and <a p b> and <b p c> 

then <a p c> 

WebPIE: OWL reasoning 

{ <a p b>, 1} 

{ <b p c>, 1} 

{ <c p d>, 1} 

{ <d p e>, 1} 

{ <e p f>, 1} 

Input: 

{ <a p c>, 2} 

{ <b p d>, 2} 

{ <c p e>, 2} 

{ <d p f>, 2} 

1st M/R job 

Output: 

Example 

WebPIE: OWL reasoning 

{ <b p c>, 1} 

{ <a p b>, 1} 

{ <b p d>, 2} 

{ <d p f>, 2} 

... 

After job 1: 

{ <b p d>, 3} 

{ <b p f>, 4} 

2nd M/R job 

Output: 

Example 
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WebPIE: OWL reasoning 

 

• By accepting only triples with a specific distance we avoid to derive 
information already derived 

• General rule: 

• Every job accepts in input only triples derived in the previous two 
steps 

• During the execution of the nth job we derive only if: 

• The antecedent triples on the left side have distance 2^(n – 1) or 2^(n – 2) 

• The antecedent  triples on the right side have distance greater than 2^(n 
– 2) 

WebPIE: Forward-chaining 

• Evaluation 

WebPIE: Forward-chaining 

• Evaluation 
We are here!! 

What we did 

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE 

 

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE 

 

 

 

Backward-chaining 

• With WebPIE, we managed to perform reasoning over very 
large data 

• However, the intrinsic problems of performing forward-
chaining reasoning still remain 

• Backward-chaining: 

• Advantage: we avoid to perform this (expensive) task 

• Disadvantage: we still need to perform reasoning at query-time 

QueryPIE: Backward-chaining 

• Reasoning is triggered only by SPARQL queries 

 

• To reduce the runtime, only the schema is pre-materialized 

• does not change often 

• relatively small compared to the rest of the data 

• widely used in the reasoning rules 

 

• QueryPIE is made of two algorithms 

• pre-materialization algorithm: executed before the user can 
query the knowledge base 

• backward-chaining algorithm: applied when the user launches a 
query 
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QueryPIE: Backward-chaining 
 

Pre-materialization algorithm 

 

• Goal: calculate all “schema” triples 

 

• Problem: cannot use forward-chaining reasoning because 
instance-triples can generate schema 

 

• Solution: We use the backward-chaining algorithm: 
• Problem: is incomplete if schema is not explicit 

• Solution: iterate the execution until we reached completeness 

 

 

QueryPIE: Backward-chaining 
 

Backward-chaining algorithm 

 

• Inspired by QSQ algorithm (Datalog) 

• Main features 

• 1) distributes the data across cluster nodes 

• 2) prunes the reasoning tree using the inferred schema 

• 3) replicates the schema and performs most  locally 

 

• Because of the pre-materialization, we can decrease the 
complexity significantly and improve the response time 

 

 

 

 

 

 

QueryPIE: Backward-chaining 

• Launched some example queries from the LUBM (10B triples) 
and LLD (5B triples) 

 

• Cost pre-materialization: 

QueryPIE: Backward-chaining 

• Runtime of single pattern queries: 

QueryPIE: Backward-chaining 

• Runtime of the LUBM SPARQL queries: 

QueryPIE: Backward-chaining 

• Response time if we increase the input size 
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What have we learnt? 

 

We stepped out from the technical contribution to identify why 
it “works”… 

 

Three important lessons: 

• 1st  lesson: Treat schema triples differently 

• 2nd lesson: Data skew dominates the data distribution 

• 3rd lesson: Certain problems appear only at a large scale 

 

1st Lesson: treat the schema triples 
differently 
• In the Semantic Web there is a big difference between 

“schema” triples and “instance” triples (A-Box vs. T-Box) 

• Schema triples: Few but very important for reasoning 

• Other triples: Many and not always used during reasoning 

 

• Both in WebPIE and QueryPIE we replicated them on all the 
nodes and keep them in memory. 

 

• Lesson: Identify the schema and treat it differently 

2nd Lesson: Data skew dominates 
the data distribution 
• Current web-data: high data skewness -> partitioning is crucial 

for performance 

• WebPIE: schema was replicated 

• QueryPIE: data was range-partitioned (good for small queries, 
bad for large queries) 

 

• Lesson: Don’t ignore data skewness. Otherwise your 
application will not scale to large numbers 

3rd Lesson: Certain problems 
appear only at a large scale 
• Web-scale reasoning requires high engineering efforts 

• WebPIE: ~15000 lines of code 

• QueryPIE: ~27000 lines of code 

 

• Which programming language to use, libraries or compression 
techniques are crucial questions to reach certain performance. 

 

• Lesson: Simple proof-of-concepts prototypes are not 
representative 

Forward vs. Backward 

• Both WebPIE and QueryPIE can scale to more than three times 
the size of the semantic web 

 

• Problem: Both approaches are still fragile => with some bad 
data the derivation can explode 

• Solution: approximation and cost models 

 

 

“Reasoning on a web-scale is possible. We only started to 
discover it.” 


