Forward vs. Backward
Two approaches for web-scale reasoning

Jacopo Urbani <jacopo@cs.vu.nl>

Vrije Universiteit Amsterdam

11/12/2013

Reasoning on RDF

= Semantic Web: machines can “reason” on web data to infer
new knowledge

* Reasoning can be performed by applying standardizes rules:

if <a type B>
and <B subclassOf C>
then <a type C>

 RDFS ruleset: ~13 rules
* OWL pD*: ~23 rules
* OWLRL ruleset: ~78 rules

Reasoning on RDF

* This is not a problem. We know how to do this.

The problem of scale

* However, the Web is a bit larger than four websites...

2007

RDF Book
Mashup

Project

berg

2008

mailto:jacopo@cs.vu.nl

11/12/2013

2011 The problem of scale

* However, the Web is a bit larger than four websites...
Current LinkedDataCloud size (updated 2011): ~20 billion facts

Google Knowledge’s Graph: 25 billions of formalized facts about
billions of items. Volume is doubling every year

Expected outcome of OpenPhacts (large project with pharma

companies): 20 - 50 billion triples, over 25 million mappings, over
20 data sources

5 Triples

11/12/2013

10 Triples Suez Canal 107 Triples

_ 108 Triples s ~10° Triples

~10%° Triples = 1 triple per web-page

Jupiter

Jupiter
Saturn

11/12/2013

“How do we reason on such a scale?”

Problems and challenges

One machine is not enough to store and process the Web

-

We must distribute data and computation
What architecture?
Several architectures of supercomputers
SIMD (single instruction/multiple data) processors, like graphic cards
Multiprocessing computers (many CPU shared memory)
Clusters (shared nothing architecture)
Algorithms depend on the architecture
We focus on the implementation on clusters

Problems and challenges

In a distributed environment the increase of performance
comes at the price of new problems that we must face:
Load balancing
High 1/0 cost
Programming complexity

Problems and challenges: load
balancing

Cause: In many cases (like reasoning) some data is needed
much more than other (e.g. schema triples)

Effect: some nodes must work more to serve the others. This
hurts scalability

Problems and challenges:
high I/0 cost

Cause: data is distributed on several nodes and during reasoning
the peers need to heavily exchange it

Effect: hard drive or network speed become the performance
bottleneck

Problems and challenges:
programming complexity

« Cause: in a parallel setting there are many technical issues to
handle
Fault tolerance
Data communication
Execution control
Etc.
* Effect: Programmers need to write much more code in order to
execute an application on a distributed architecture

LI I N

11/12/2013

What we did

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE

What we did

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE

WebPIE

* WebPIE is a forward reasoner that uses MapReduce to execute th
reasoning rules
* All code, documentation, tutorial etc. is available online.

http://cs.vu.nl/webpie,

* WebPIE algorithm:
Input: triples in N-Triples format ' compression
1) Compress the data with dictionary encoding —1

2) Launch reasoning -
3) Decompress derived triples
Output: triples in N-Triples format-

2" step: reasoning

WebPIE: Overview

* RDFS reasoning
Set of 13 rules
All rules require at most one join between a
“schema” triple and an “instance” triple
* OWL reasoning
Logic more complex => rules more difficult
The ter Horst fragment (pD*) provides a set of 23 new rules
Some rules require a join between instance triples

Some rules require multiple joins

WebPIE: Overview

* RDFS reasoning
Set of 13 rules
All rules require at most one join between a
“schema” triple and an “instance” triple
* OWLreasoning
Logic more complex => rules more difficult
The ter Horst fragment (pD*) provides a set of 23 new rules
Some rules require a join between instance triples

Some rules require multiple joins

http://systrap.com/

11/12/2013

WebPIE: RDFS reasoning

* How can we apply a reasoning rule with MapReduce?

if ardf:itype B
and B rdfs:subClassOf C
then a rdf:type C

INPUT QUTPUT
andflype C17» Map -<Ci arfyypeCi>
g \ ardftype C3
brdftype C1-» Map -<C1.'brdkype C1> —u-"Reducg I b .
andftypeC2p Map | <czramiypeczs e
Gl dlissub0assOf C3,, Map |-<cianmssicassorcy>— 4 Reduca)

WebPIE: RDFS reasoning

* Such straightforward way does not work
Load balancing
Duplicates derivation
etc.
* Three main optimizations
Rules are applied in a specific order
Schema triples are replicated in main memory

Joins are performed in the reduce function and use the map
function to generate less duplicates

WebPIE: Overview

* RDFS reasoning
Set of 13 rules

All rules require at most one join between a “schema”
triple and an “instance” triple

* OWLreasoning
Logic more complex => rules more difficult
The ter Horst fragment (pD*) provides a set of 23 new rules
Some rules require a join between instance triples
Some rules require multiple joins

Need to perform join between instance triples
Every time we derive also what we derived before
* Solution: we perform the join in the “naive” way, but we only
consider triples on a “specific” position

WebPIE: OWL reasoning

Example
Input: Output:
{<aph>/1}
1stm/Rjob | {22
{sbpc>/ 1}
{<bpd> 2}
{£cpd>/1}
{<cpe> 2}
{«dpe> 1}
{<dpf> 2}
{sepf>, 1}

WebPIE: OWL reasoning

Example

After job 1: Output:

{ c>, 1}
. 1y 2nd M/R job
<apX 1

Q\x {<bpd> 3}

{opd, 2}
{<bpf> 4}

{£dpf>, 2}

WebPIE: OWL reasoning
* RDFS optimizations are not enough. New ones are needed to
deal with the more complex rules
* We will explain only one:
© Example: if <p type TransitiveProperty>
and <ap b>and <b p c>
then <a p c>
+ This rule is problematic because

WebPIE: OWL reasoning

By accepting only triples with a specific distance we avoid to derive
information already derived

General rule:

Every job accepts in input only triples derived in the previous two
steps
During the execution of the nth job we derive only if:

The antecedent triples on the left side have distance 24(n — 1) or 2*(n - 2)

The antecedent triples on the right side have distance greater than 2A(n
-2)

WebPIE: Forward-chaining

* Evaluation

LI |

gt Ketsementssec

We are h

Input sizo (Babons of statemens)

Backward-chaining

* With WebPIE, we managed to perform reasoning over very
large data

* However, the intrinsic problems of performing forward-
chaining reasoning still remain

* Backward-chaining:

Advantage: we avoid to perform this (expensive) task
Disadvantage: we still need to perform reasoning at query-time

11/12/2013

WebPIE: Forward-chaining

* Evaluation
i.
..
i
B
H . - -— . -
i - .

Input e @ibors of siatemerrs)

What we did

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE

2. Then we researched for methods for doing backward-

chaining reasoning. QueryPIE

QueryPIE: Backward-chaining

* Reasoning is triggered only by SPARQL queries

* To reduce the runtime, only the schema is pre-materialized
does not change often
relatively small compared to the rest of the data
widely used in the reasoning rules

* QueryPIE is made of two algorithms
pre-materialization algorithm: executed before the user can
query the knowledge base
backward-chaining algorithm: applied when the user launches a
query

11/12/2013

QueryPIE: Backward-chaining

Pre-materialization algorithm

* Goal: calculate all “schema” triples

* Problem: cannot use forward-chaining reasoning because
instance-triples can generate schema

* Solution: We use the backward-chaining algorithm:
Problem: is incomplete if schema is not explicit
Solution: iterate the execution until we reached completeness

QueryPIE: Backward-chaining

Backward-chaining algorithm

* Inspired by QSQ algorithm (Datalog)

* Main features
1) distributes the data across cluster nodes
2) prunes the reasoning tree using the inferred schema
3) replicates the schema and performs most locally

* Because of the pre-materialization, we can decrease the
complexity significantly and improve the response time

QueryPIE: Backward-chaining

+ Launched some example queries from the LUBM (10B triples)
and LLD (5B triples)

+ Cost pre-materialization:

Dataset Reasoning time N. N. derived
Our approach | Full material- | iterations| triples
ization
LUBM 1s 4d4h16m 4 390
LLD 16m 5d10h45m 7 10 millions

QueryPIE: Backward-chaining

* Runtime of single pattern queries:

Query |_Runtime (ms) T Processed Triples 1/0 access
Cold ‘Warm Total Output # lookups

1 299.45 6.18 5 5 43 8
2 4767.17 | 1316 463 239 12 205
3 186.06 5.65 3 1 18 5
4 310.53 10.5 37 29 86 8
5 382.21 13.9 1480 719 18 4
6 3986.91 | 2640.81 | 1599987 | 1599987 2 12
7 470.68 224.27 0 0 670 23
8 23.85 6.33 4466 4466 1 42
9 7705.91 | 616.42 140 128 3540 105
10 2609.52 | 1163.83 28446 26860 14372 337
11 2719.40 | 1914.28 8546 4504 15128 64
12 1954.97 | 2054.66 | 1187944 | 1187944 1 10

QueryPIE: Backward-chaining

* Runtime of the LUBM SPARQL queries:

Q. | Resp. time (ms.) | Results
Cold | Warm (#)

1 364.05 20.28 4
2 368.19 25.12 6
3 2041.20 | 493.89 34
4 1283.88 82.42 719
5 2061.27 | 361.11 4
6 | 11536.95 | 2784.72 7790
7 1745.20 | 367.96 4
8 1664.57 74.03 224
9 5717.32 | 1163.61 15

-

0 | 12304.29 | 886.68 37118

QueryPIE: Backward-chaining

* Response time if we increase the input size

Query 1
1oos | Queys —a— Z029]
Querys —o—
Query s —a—
Query 10 ——
105 T2 1
B A B
13
- 4
] aams Bibme Biom|
&
100ms. —
C5ms Goms “08ms]
e £ £
1oms 1

1 10 100
Input sizo (bilion triplos)

What have we learnt?

We stepped out from the technical contribution to identify why
it “works”...

Three important lessons:

© 1% lesson: Treat schema triples differently

+ 2" |esson: Data skew dominates the data distribution

= 3 |esson: Certain problems appear only at a large scale

11/12/2013

15t Lesson: treat the schema triples
differently

In the Semantic Web there is a big difference between

“schema” triples and “instance” triples (A-Box vs. T-Box)
Schema triples: Few but very important for reasoning
Other triples: Many and not always used during reasoning

Both in WebPIE and QueryPIE we replicated them on all the
nodes and keep them in memory.

Lesson: Identify the schema and treat it differently

2nd Lesson: Data skew dominates
the data distribution

= Current web-data: high data skewness -> partitioning is crucial
for performance

WebPIE: schema was replicated

QueryPIE: data was range-partitioned (good for small queries,
bad for large queries)

* Lesson: Don’t ignore data skewness. Otherwise your
application will not scale to large numbers

3" Lesson: Certain problems
appear only at a large scale

* Web-scale reasoning requires high engineering efforts
WebPIE: ~15000 lines of code
QueryPIE: ~27000 lines of code

* Which programming language to use, libraries or compression
techniques are crucial questions to reach certain performance.

* Lesson: Simple proof-of-concepts prototypes are not
representative

Forward vs. Backward

* Both WebPIE and QueryPIE can scale to more than three times
the size of the semantic web

* Problem: Both approaches are still fragile => with some bad
data the derivation can explode

* Solution: approximation and cost models

“Reasoning on a web-scale is possible. We only started to
discover it.”

