
11/12/2013

1

Forward vs. Backward
Two approaches for web-scale reasoning

Jacopo Urbani <jacopo@cs.vu.nl>

Vrije Universiteit Amsterdam

Reasoning on RDF

• Semantic Web: machines can “reason” on web data to infer
new knowledge

• Reasoning can be performed by applying standardizes rules:

 if <a type B>
 and <B subclassOf C>
 then <a type C>

• RDFS ruleset: ~13 rules

• OWL pD*: ~23 rules

• OWL RL ruleset: ~78 rules

Reasoning
Engine

Q: "Which drugs have side-
effects discovered after trials?"

A: "Drug A after trial_X at location_L"
 "Drug B after trial_W at location_Y"
 ...

http://www.aers.data2semantics.org

Side-effects

treatments

and drugs

List 5000
FDA-

approved
drugs

http://drugbank.ca
 Data on medical

trials, etc.

http://www.linkedct.org

http://www.geonames.org

Data about

10M

geographical

places

Rule1, Rule2, etc.

Reasoning on RDF

• This is not a problem. We know how to do this.

The problem of scale

• However, the Web is a bit larger than four websites…

2007 2008

mailto:jacopo@cs.vu.nl

11/12/2013

2

2009 2010

2011 The problem of scale

• However, the Web is a bit larger than four websites…

• Current LinkedDataCloud size (updated 2011): ~20 billion facts

• Google Knowledge’s Graph: 25 billions of formalized facts about
billions of items. Volume is doubling every year

• Expected outcome of OpenPhacts (large project with pharma
companies): 20 - 50 billion triples, over 25 million mappings, over
20 data sources

1 triple:
1 Triple = 1 Golf ball 5 Triples

11/12/2013

3

10 Triples 107 Triples Suez Canal

Denny Vrandečić – AIFB, Universität Karlsruhe (TH) 14 http://www.aifb.uni-karlsruhe.de/WBS

108 Triples Moon

Denny Vrandečić – AIFB, Universität Karlsruhe (TH) 15 http://www.aifb.uni-karlsruhe.de/WBS

~109 Triples Earth

Denny Vrandečić – AIFB, Universität Karlsruhe (TH) 16 http://www.aifb.uni-karlsruhe.de/WBS

~1010 Triples ≈ 1 triple per web-page

Jupiter

Denny Vrandečić – AIFB, Universität Karlsruhe (TH) 17 http://www.aifb.uni-karlsruhe.de/WBS

~1011 Triples

11/12/2013

4

~1014 Triples

Denny Vrandečić – AIFB, Universität Karlsruhe (TH) 19 http://www.aifb.uni-karlsruhe.de/WBS

• “How do we reason on such a scale?”

Problems and challenges

• One machine is not enough to store and process the Web

• We must distribute data and computation

• What architecture?
• Several architectures of supercomputers

• SIMD (single instruction/multiple data) processors, like graphic cards

• Multiprocessing computers (many CPU shared memory)

• Clusters (shared nothing architecture)

• Algorithms depend on the architecture

• We focus on the implementation on clusters

Problems and challenges

• In a distributed environment the increase of performance
comes at the price of new problems that we must face:

• Load balancing

• High I/O cost

• Programming complexity

Problems and challenges: load
balancing
• Cause: In many cases (like reasoning) some data is needed

much more than other (e.g. schema triples)

• Effect: some nodes must work more to serve the others. This
hurts scalability

Problems and challenges:
high I/O cost
• Cause: data is distributed on several nodes and during reasoning

 the peers need to heavily exchange it

• Effect: hard drive or network speed become the performance
bottleneck

11/12/2013

5

Problems and challenges:
programming complexity
• Cause: in a parallel setting there are many technical issues to

 handle

• Fault tolerance

• Data communication

• Execution control

• Etc.

• Effect: Programmers need to write much more code in order to
execute an application on a distributed architecture

What we did

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE

What we did

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE

WebPIE

• WebPIE is a forward reasoner that uses MapReduce to execute the
reasoning rules

• All code, documentation, tutorial etc. is available online.

• WebPIE algorithm:

• Input: triples in N-Triples format

• 1) Compress the data with dictionary encoding

• 2) Launch reasoning

• 3) Decompress derived triples

• Output: triples in N-Triples format

1st step:
compression

2nd step: reasoning

http://cs.vu.nl/webpie/

WebPIE: Overview

• RDFS reasoning

• Set of 13 rules

• All rules require at most one join between a
“schema” triple and an “instance” triple

• OWL reasoning

• Logic more complex => rules more difficult

• The ter Horst fragment (pD*) provides a set of 23 new rules

• Some rules require a join between instance triples

• Some rules require multiple joins

WebPIE: Overview

• RDFS reasoning

• Set of 13 rules

• All rules require at most one join between a
“schema” triple and an “instance” triple

• OWL reasoning

• Logic more complex => rules more difficult

• The ter Horst fragment (pD*) provides a set of 23 new rules

• Some rules require a join between instance triples

• Some rules require multiple joins

http://systrap.com/

11/12/2013

6

WebPIE: RDFS reasoning

• How can we apply a reasoning rule with MapReduce?

if a rdf:type B

and B rdfs:subClassOf C

then a rdf:type C

WebPIE: RDFS reasoning

• Such straightforward way does not work

• Load balancing

• Duplicates derivation

• etc.

• Three main optimizations

1. Rules are applied in a specific order

2. Schema triples are replicated in main memory

3. Joins are performed in the reduce function and use the map
function to generate less duplicates

WebPIE: Overview

• RDFS reasoning

• Set of 13 rules

• All rules require at most one join between a “schema”
triple and an “instance” triple

• OWL reasoning

• Logic more complex => rules more difficult

• The ter Horst fragment (pD*) provides a set of 23 new rules

• Some rules require a join between instance triples

• Some rules require multiple joins

WebPIE: OWL reasoning

• RDFS optimizations are not enough. New ones are needed to
deal with the more complex rules

• We will explain only one:

• Example:

• This rule is problematic because

• Need to perform join between instance triples

• Every time we derive also what we derived before

• Solution: we perform the join in the “naïve” way, but we only
consider triples on a “specific” position

if <p type TransitiveProperty>

and <a p b> and <b p c>

then <a p c>

WebPIE: OWL reasoning

{ <a p b>, 1}

{ <b p c>, 1}

{ <c p d>, 1}

{ <d p e>, 1}

{ <e p f>, 1}

Input:

{ <a p c>, 2}

{ <b p d>, 2}

{ <c p e>, 2}

{ <d p f>, 2}

1st M/R job

Output:

Example

WebPIE: OWL reasoning

{ <b p c>, 1}

{ <a p b>, 1}

{ <b p d>, 2}

{ <d p f>, 2}

...

After job 1:

{ <b p d>, 3}

{ <b p f>, 4}

2nd M/R job

Output:

Example

11/12/2013

7

WebPIE: OWL reasoning

• By accepting only triples with a specific distance we avoid to derive
information already derived

• General rule:

• Every job accepts in input only triples derived in the previous two
steps

• During the execution of the nth job we derive only if:

• The antecedent triples on the left side have distance 2^(n – 1) or 2^(n – 2)

• The antecedent triples on the right side have distance greater than 2^(n
– 2)

WebPIE: Forward-chaining

• Evaluation

WebPIE: Forward-chaining

• Evaluation
We are here!!

What we did

1. First we explored the possibility of performing forward-
chaining reasoning. WebPIE

2. Then we researched for methods for doing backward-
chaining reasoning. QueryPIE

Backward-chaining

• With WebPIE, we managed to perform reasoning over very
large data

• However, the intrinsic problems of performing forward-
chaining reasoning still remain

• Backward-chaining:

• Advantage: we avoid to perform this (expensive) task

• Disadvantage: we still need to perform reasoning at query-time

QueryPIE: Backward-chaining

• Reasoning is triggered only by SPARQL queries

• To reduce the runtime, only the schema is pre-materialized

• does not change often

• relatively small compared to the rest of the data

• widely used in the reasoning rules

• QueryPIE is made of two algorithms

• pre-materialization algorithm: executed before the user can
query the knowledge base

• backward-chaining algorithm: applied when the user launches a
query

11/12/2013

8

QueryPIE: Backward-chaining

Pre-materialization algorithm

• Goal: calculate all “schema” triples

• Problem: cannot use forward-chaining reasoning because
instance-triples can generate schema

• Solution: We use the backward-chaining algorithm:
• Problem: is incomplete if schema is not explicit

• Solution: iterate the execution until we reached completeness

QueryPIE: Backward-chaining

Backward-chaining algorithm

• Inspired by QSQ algorithm (Datalog)

• Main features

• 1) distributes the data across cluster nodes

• 2) prunes the reasoning tree using the inferred schema

• 3) replicates the schema and performs most locally

• Because of the pre-materialization, we can decrease the
complexity significantly and improve the response time

QueryPIE: Backward-chaining

• Launched some example queries from the LUBM (10B triples)
and LLD (5B triples)

• Cost pre-materialization:

QueryPIE: Backward-chaining

• Runtime of single pattern queries:

QueryPIE: Backward-chaining

• Runtime of the LUBM SPARQL queries:

QueryPIE: Backward-chaining

• Response time if we increase the input size

11/12/2013

9

What have we learnt?

We stepped out from the technical contribution to identify why
it “works”…

Three important lessons:

• 1st lesson: Treat schema triples differently

• 2nd lesson: Data skew dominates the data distribution

• 3rd lesson: Certain problems appear only at a large scale

1st Lesson: treat the schema triples
differently
• In the Semantic Web there is a big difference between

“schema” triples and “instance” triples (A-Box vs. T-Box)

• Schema triples: Few but very important for reasoning

• Other triples: Many and not always used during reasoning

• Both in WebPIE and QueryPIE we replicated them on all the
nodes and keep them in memory.

• Lesson: Identify the schema and treat it differently

2nd Lesson: Data skew dominates
the data distribution
• Current web-data: high data skewness -> partitioning is crucial

for performance

• WebPIE: schema was replicated

• QueryPIE: data was range-partitioned (good for small queries,
bad for large queries)

• Lesson: Don’t ignore data skewness. Otherwise your
application will not scale to large numbers

3rd Lesson: Certain problems
appear only at a large scale
• Web-scale reasoning requires high engineering efforts

• WebPIE: ~15000 lines of code

• QueryPIE: ~27000 lines of code

• Which programming language to use, libraries or compression
techniques are crucial questions to reach certain performance.

• Lesson: Simple proof-of-concepts prototypes are not
representative

Forward vs. Backward

• Both WebPIE and QueryPIE can scale to more than three times
the size of the semantic web

• Problem: Both approaches are still fragile => with some bad
data the derivation can explode

• Solution: approximation and cost models

“Reasoning on a web-scale is possible. We only started to
discover it.”

