Ontology-Based Query Answering

with Existential Rules

Marie-Laure Mugnier

University of Montpellier

Ontology-based Query Answering

Patient records

Medical ontology

« Patient P suffers from leukemia and has been prescribed drug D against hypertension »

Query: « find all cancer patients treated for high-blood pressure »

→ Use ontological knowledge to infer all deducible answers

Data / Facts

Relational Database

parentOf Male Fem.

A B
A C
C x

RDF (Semantic Web)

Abstraction in First-Order Logic

 $\exists x (parentOf(A,B) \land parentOf(A,C) \land parentOf(C,x) \land F(A) \land M(B))$

We generalize here the classical notion of a fact by allowing existential variables

Or in graphs / hypergraphs

Etc.

Conjunctive Queries (CQ)

« Find all x such that x is a female and has a child who is a female »

 $\exists y (Female(x) \land childOf(x, y) \land Female(y))$ First-Order Logical formula

 $ans(x) \leftarrow Female(x), childOf(x, y), Female(y) Datalog notation$

SELECT ... FROM ... WHERE ... SQL

SELECT ... WHERE < Graph Pattern> SPARQL

Easy generalization to a union (OR) of conjunctive queries

Existential Rules

 $\forall x \forall y \text{ (siblingOf}(x,y) \rightarrow \exists z \text{ (parentOf}(z,x) \land parentOf(z,y)))$

Simplified form: siblingOf(x,y) \rightarrow parentOf(z,x) \land parentOf(z,y)

- See also Datalog +/- [Cali Gottlob Lukasiewicz PODS 2009]
- Same as the logical translation of Conceptual Graph rules
- Generalize lightweight Description Logics used for OBQA

Graphical View of Existential Rules

 $\forall x \forall y \text{ (siblingOf(x,y)} \rightarrow \exists z \text{ (parentOf(z,x)} \land \text{parentOf(z,y)))}$

Value Invention (Generation of Fresh Existentials)

 $R = \forall x \forall y \text{ (siblingOf}(x,y) \rightarrow \exists z \text{ (parentOf}(z,x) \land parentOf(z,y)))$

F = siblingOf(A,B)

h: body → F

 $h = \{(x,A), (y,B)\}$

A rule body → head is applicable to a fact F if there is a homomorphism h from body to F The resulting fact is F'= F U h(head)

[with renaming existential variables of head]

$$F' = \exists z0 \text{ (siblingOf(A,B)}$$

 $\land \text{ parentOf(z0,A)} \land \text{ parentOf(z0,B))}$

Existential Rules Framework (Datalog+/-)

Existential Rule: $\forall X \ \forall Y \ (B[X, Y] \rightarrow \exists Z \ H[X, Z])$

Equality Rule: $\forall X \ (B[X] \rightarrow x = e)$ with x,e variables or constants

Negative Constraint: \neg **3X B[X]** or **∀X** (**B[X]** \rightarrow **⊥**)

Existential Rules cover « lightweight » Description Logics

New DLs tailored for ontology-based data access:

DL-Lite
$$\mathcal{EL}$$
 Core of the « tractable profiles » of OWL2

Human \sqsubseteq \exists parentOf $\overline{\ }$. Human

Human(x) \rightarrow parentOf(y,x) \land Human (y)

Existential rules are more expressive:

siblingOf(x,y) \rightarrow parentOf(z,x) \land parentOf(z,y) not expressible in DL

- Non-bounded predicate arity provides more flexibility:
 - → direct correspondence with database relations
 - → adding contextual information is easy

Forward vs Backward Chaining

F, $\mathcal{R} \models Q$ iff Q can be mapped to F, where Q is obtained by a rewriting sequence from Q with \mathcal{R}

Backward Chaining Scheme

■ Basic step:

Forward chaining may not halt

[the same trouble with backward chaining]
Finding a halting method is hopeless: entailment is undecidable

Decidability Issues

- Entailment is not decidable
- Many « decidable » classes exhibited in databases and KR
- Three generic kinds of properties ensuring decidability:
 - Saturation by Forward Chaining halts
 - Query rewriting by Backward Chaining halts
 - Saturation by Forward Chaining does not halt but the generated facts have a tree-like structure

(Partial) inclusion map of decidable classes

E.g. [Mugnier RR 2011] for details

Decidable Classes with Polynomial Data Complexity

Conclusion on Existential Rules for Ontology-Based QA

- An emerging rule-based framework
 - simple, expressive and flexible
 - suitable to Ontology-Based Query Answering
- Currently:
 - A quite clear picture of decidable classes of rules with complexity analysis
 - Effervescence around new algorithmic techniques (in particular other kinds of rewritings-
 - First implementations for very specific subclasses
- Challenges
 - Scalability
 - Querying knowledge bases with inconsistent data