About me Motivation

Background Cor

Composability Con

Composition Optimisation

sation Appli

Applications Evaluation

ion Conclusion

Composing and Optimising Services in the Semantic Web

Freddy Lécué The University of Manchester Booth Street East, Manchester, UK

IBM Research Smarter Cities Technology Centre Mulhuddart, Dublin 15, Ireland June 23rd, 2011

Freddy Lécué

Objective

Modelling and Reasoning on Services in the Internet of Things for Smarter Cities.

About me Motivation Background

Composability

Composition Optimisation

Applications Evaluation

Conclusion

Internet of Things? Physical Mashups? Internet of Services?

[http://www.flickr.com/photos/72233349@N00/4746650074]

About me Motivation Background Composability Composition Optimisation •0000

Embedded Devices are already All Around! ... and more to come!

Applications

Evaluation

Conclusion

Chumby

Any Impact of their Composition?

- Creating a re-usable and composable physical world;
- From web to physical mashup mashup;
- Physical Object oriented Development.

About me	Motivation 00●00	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion

Research Challenge

Optimal Web-based Service Composition

Combining services and optimising their selection.

[http://www.flickr.com/photos/brapke/]

Why is it Important?

- Added-value services;
- Higher level functionalities.

What is it Challenging? Why?

- Automation;
- Dynamicity;
- Scalability;
- ... in Industrial settings.

Freddy Lécué

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
	00000							

Contributions

Composing and Optimising Services in the Semantic Web

- Composition
 - Composability criteria for services: semantic links;
 - Automated and scalable semantic link-based approach.
- Optimisation
 - Semantics-driven quality of composition;
 - Scalable approach.

What is Innovative?

Semantic robustness.

Industrial Context

Expressivity of services, their semantics and composition.

o O	00000	oo	0000	000	000	00	000	Conclusion
Outlir	ie							
1	About me	е						
2	Motivatio	n						
3	Backgrou	und						
	Duongrou							
4	Web Serv	vices Comp	osability					
5	Automate	ed Web Ser	vice Compo	sition App	oach			
6	Optimisa	tion						
7	Applicati	ons						
8	Evaluatio	on						
9	Conclusi	on						
Freddy Lécu	é							9/ 32

Background

bout me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
		• •						

Web Service, Semantic Web and Semantic Web Services

- Nowadays Web: syntax-based Web.
- Semantic Web is an extension of current Web in which information is given well-defined meaning.
 - Ontology: a key enabling technology (RDF, OWL)
- Semantic web principles applied to web services
 - Give a semantics to services description;
 - Description languages with a semantics;

About me Motivation Background Composability Composition Optimisation Applications Evaluation Conclusion 00000 000 000 000 000 000 000

Semantic Web Services at Functional Level

Input and Output Parameters

Concepts in a TBox T of an ontology.

• SA-WSDL, OWL-S profile level, WSMO capability level.

Preconditions and Effects

Horn-like rules expressed in terms of inputs and outputs.

SWRL.

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion

Causal Laws and Semantic Links

Causal Laws

• Consistent conditions.

Semantic Link

- Data description alignment;
- Data flow.

Data Flow/ Propagation

Freddy Lécué

About me o	Motivation	Background	Composability ●○○○	Composition 000	Optimisation 000	Applications	Evaluation	Conclusion
Sema	ntic Lir	nks						

and their Output and Input parameters (as DL concepts);
valued by Sim_T (Out_s_V, In_s_X);

- and their Output and Input parameters (as DL concepts);
- valued by $Sim_T(Out_s_y, In_s_x)$;

About me	Motivation	Background	Composability ●○○○	Composition	Optimisation	Applications	Evaluation	Conclusion
Sema	ntic Lir	nks						

- and their Output and Input parameters (as DL concepts);
- valued by Sim_T (Out_s_y, In_s_x);

About me o	Motivation	Background	Composability ●○○○	Composition	Optimisation	Applications	Evaluation	Conclusion
Sema	ntic Lir	ıks						

- and their Output and Input parameters (as DL concepts);
- valued by $Sim_T(Out_s_y, In_s_x)$;

 Sim_T is reduced to the five matchmaking functions [M.Paolucci et al. ISWC'02, Li and Horrocks WWW'03]:

- **Exact** i.e., $\mathcal{T} \models Out_s_y \equiv In_s_x$;
- Plugin i.e., $\mathcal{T} \models Out_s_y \sqsubseteq ln_s_x$;
- Subsume i.e., $\mathcal{T} \models In_s_x \sqsubseteq Out_s_y$;
- Intersection i.e., $\mathcal{T} \not\models Out_s_y \sqcap In_s_x \sqsubseteq \bot$;
- **Disjoint** i.e., $\mathcal{T} \models Out_s_y \sqcap In_s_x \sqsubseteq \bot$;

Freddy Lécué

About me	Motivation	Background	Composability ●○○○	Composition	Optimisation	Applications	Evaluation	Conclusion
Sema	ntic Lir	nks						

- and their Output and Input parameters (as DL concepts);
- valued by $Sim_T(Out_s_y, In_s_x)$;

- Sim_T is reduced to the five matchmaking functions [M.Paolucci et al. ISWC'02, Li and Horrocks WWW'03]:
 - Exact which is Robust;
 - PlugIn which is Robust;
 - Subsume which is Non Robust;
 - Intersection which is Non Robust;
 - Disjoint which is Non Robust;

About me	Motivation	Background	Composability ○●○○	Composition	Optimisation	Applications	Evaluation	Conclusion

Non Robust Semantic Links

Concept Difference for Ensuring Robustness (1)

Composability

0000

Definition (Concept Difference)

Background

The difference between two DL concepts In_s_x and Out_s_y is: $In_s_x \setminus Out_s_y := \min_{\leq d} \{H | H \sqcap Out_s_y \equiv In_s_x \sqcap Out_s_y\}$

Composition

Optimisation

Applications

Evaluation

Conclusion

Why is it not Robust?

Missing Description $In_{s_x} \setminus Out_{s_y}$.

Why it could be Robust?

Common Description $lcs(Out_s_y, ln_s_x)$.

Objective

Explaining (proof) Where, Why and How ensuring robustness.

Freddy Lécué

About me

Motivation

Concept Difference for Ensuring Robustness (2)

Composability

0000

Definition (Concept Difference)

Background

The difference between two DL concepts In_s_x and Out_s_y is: $In_s_x \setminus Out_s_y := \min_{i \leq d} \{H \mid H \sqcap Out_s_y \equiv In_s_x \sqcap Out_s_y\}$

Composition

Optimisation

Applications

Evaluation

Conclusion

Example

Motivation

Non robust semantic link valued by the Subsume match level.

About me

Concept Difference for Ensuring Robustness (2)

Composability

0000

Definition (Concept Difference)

Background

The difference between two DL concepts In_s_x and Out_s_y is: $In_s_x \setminus Out_s_y := \min_{\leq d} \{H | H \sqcap Out_s_y \equiv In_s_x \sqcap Out_s_y\}$

Composition

Optimisation

Applications

Evaluation

Conclusion

Example Non robust semantic link valued by the Subsume match level. S_V Output S_x Input Parameters_ Parameters S_V Input $H \equiv \forall netSpeed.Adsl1M$ S_Output Parameters Parameters SlowNetworkConnection NetworkConnection ∀netSpeed.Speed **≡** NetworkConnection Web service: s_x Web service: $s_v \sqcap H$ $\sqcap \forall netSpeed.Adsl1M$

About me

Motivation

About me o	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion

Composability and Robustness, Right! What about automated composition?

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				000				

Semantics Augmented AI Planning Problem

$\langle \mathcal{T}, \mathcal{S}_{Ws}, \mathcal{A}, \beta \rangle$

- A knowledge based: A Terminological Box T;
- A set of possible state transitions *S_{Ws}*: Services;
- A set of initial state *A*: An Assertional Box;
- An explicit goal representation $\beta \subseteq T$: DL concepts.

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				•00				

Semantics Augmented AI Planning Problem

$\langle \mathcal{T}, \mathcal{S}_{Ws}, \mathcal{A}, \beta \rangle$

- A knowledge based: A Terminological Box T;
- A set of possible state transitions *S_{Ws}*: Services;
- A set of initial state *A*: An Assertional Box;
- An explicit goal representation $\beta \subseteq T$: DL concepts.

Vs. State-of-the-Art

- Services: conditional actions;
- Semantic links and causal laws -driven planning;
- Compositions: conditional and concurrent plans;
- → AI Planning + DL Reasoning.

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				000				

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				000				

About me	Motivation	Background	Composability	Composition ○○●	Optimisation	Applications	Evaluation	Conclusion

Required Axioms: Σ , \mathcal{D}_{una} , \mathcal{D}_{V} and ...

• \mathcal{D}_{S_0} , \mathcal{D}_{ss} , \mathcal{D}_{sr} , \mathcal{D}_{ap} ,

About me	Motivation	Background	Composability	Composition ○○●	Optimisation	Applications	Evaluation	Conclusion

Required Axioms: Σ , \mathcal{D}_{una} , \mathcal{D}_{V} and ...

$$\mathcal{D}_{\mathcal{S}_0}, \mathcal{D}_{ss}, \mathcal{D}_{sr}, \mathcal{D}_{ap},$$

- *UKPhoneNumber*(+447767411876, *S*₀);
- *UKZipCode*(*M*156*PB*, *S*₀);
- validMail(freddy.lecue@manchester.ac.uk, S₀).

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				000				

Required Axioms: Σ , \mathcal{D}_{una} , \mathcal{D}_{V} and ...

•
$$\mathcal{D}_{S_0}$$
, \mathcal{D}_{ss} , \mathcal{D}_{sr} , \mathcal{D}_{ap} ,

phoneNumberOf(output(VoiceOverIP(x), 1), ph_nb, do(VoiceOverIP(x), s)) ←
Poss(VoiceOverIP(x), s) ∧ (phoneNumberOf(x, ph_nb, s))∨
phoneNumberOf(output(VoiceOverIP(x), 1), ph_nb, s))

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				000				

Required Axioms: Σ , \mathcal{D}_{una} , \mathcal{D}_V and ...

•
$$\mathcal{D}_{S_0}$$
, \mathcal{D}_{ss} , \mathcal{D}_{sr} , \mathcal{D}_{ap} ,

sr(AdslEligibility, s) ← NetworkConnection(x, s)

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
				000				

Required Axioms: Σ , \mathcal{D}_{una} , \mathcal{D}_{V} and ...

• \mathcal{D}_{S_0} , \mathcal{D}_{ss} , \mathcal{D}_{sr} , \mathcal{D}_{ap} ,

 $Poss(VoiceOverIP(x), s) \equiv$

validNetworkConnection(x, s) \land

supportConnectionType(x, s) \land

KRef(*NetworkConnection*(*x*), *s*)

About me Motivation Background

Composability

Composition

Optimisation

Applications Evaluation

Conclusion

Composability, Robustness, and Composition! What about optimal results?

Issues

- Quality model;
- Optimisation approach.

[http://www.flickr.com/photos/62220986@N04]

Our focus is on:

QoS and functional constraints (between services).

Our Quality Model

- Execution price;
- Response time;
- Common description rate;
- Matching quality.

Optimal (service, task) assignement in term of QoS and functional quality, satisfying constraints *C*.

Freddy Lécué

About me Motivation Background Composability Composition Optimisation Applications Evaluation Conclusion 000 Constraints Satisfaction Optimization Problem (CSOP) • T is the set of tasks (*variables*) $\{T_1, T_2, ..., T_n\}$; • **D** is the set of *domains* $\{D_1, D_2, ..., D_n\}$ i.e., services; • C is the set of *constraints* i.e., local C_1 and global C_G ; $e.g., \ \frac{1}{|\boldsymbol{s}|_{i,j}^{A}|} \sum_{\boldsymbol{s}|_{i,j}^{A}} q_{cd}(\boldsymbol{s}|_{i,j}^{A}) \geq v, \ v \in [0,1] \qquad \sum_{T_{i}} q_{\rho r}(T_{i}) \leq v, \ v \in \Re^{+}$

• f is an evaluation function.

Experimented Approaches

- Integer Programming (optimal, appropriate scalability);
- Genetic Algorithm (sub-optimal, better scalability);
- Stochastic Search (no optimal, best scalability);

What About an Integrated Approach? Where? and How?

About me Motivation Ba

Background Comp

lity Composition

on Optimisation

Applications

Evaluation Conclus

... and on Top of Service Composition and Optimisation?

[http://www.flickr.com/photos/72233349@N00/4746650074]

bout me	Motivation	Background	Composability	Com
				000

position Optimisation

Applications ●○ Evaluation Conclusion

Automated Internet Package Configuration (France Telecom R&D)

Objective

- Nowadays: Static/Predefined packages e.g., ADSL Max⁺ + HDTV.
- Future: Dynamic, automated configuration of Orange's services.

Challenge

Selecting, combining existing services to provide higher level functionalities !

Freddy Lécué

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion
						00		

Web2.0 Meet Friends Service (British Telecom)

Objective

Organising a meeting with a group of friends at short notice using most efficient and reliable Web 2.0 based services.

Challenge

Selecting, organising, aggregating heteogeneous content from data-oriented services!

28/32

Composability

About me

Motivation

Background

Main Formal Results and Experimentation

 Constraints Satisfaction Optimisation Problem, formal model for evaluating compositions:

Composition

Optimisation

Applications

Evaluation

000

Conclusion

Computational complexity: Θ(GA or IP) < Θ(DL Reasoning);

Composition & Optimisation - Random Generation of Services

Main Results (Scenarios-Dependence!)

Composability

• Computation time: $\Theta(\text{Optimisation}) << \Theta(\text{Composition})$.

Composition

Optimisation

Applications

Evaluation

000

Conclusion

• $\Theta(GA \text{ or } IP) < \Theta(DL \text{ Reasoning}) < \Theta(AI \text{ Planning})$

Best Practices for using our Approach

Procoss	Paramotore		Computat	ion Time in ms	
FIOCESS	raiameters	(0, 1000]	(1000, 2000]	(2000, 5000]	(5000, 10000]
Semantic Links	Nb services	35	53	65	71
oriented	Nb Inputs, Outputs	2	2	2	2
Semantic Links	Nb services	69	74	78	83
and Causal	Nb Inputs, Outputs	4	4	4	4
Laws oriented	Nb Preconditions, Effects Axioms	4	4	4	4
Composition	Nb Services	220	260	350	450
Optimization	Nb Candidate semantic Link	100	100	100	100

About me

Motivation

Background

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion

Take Away Notes

- Objective: Web-based service composition.
- Challenge: Automation, Scalability, Optimality and Expressivity.
- Approach: Semantics-based.
- Impact:
 - Automated interaction of services in the Internet of Things.
 - Limiting cost of data integration.
- Applications: Everything's connected.
- Lessons Learnt: NP Hard... but tradeoff Complexity/Expressivity.

Future Work: Serving Smarter Cities

- Seeking services in the Linked Open Data initiative;
- Lightweight reasoning for better scalability;

Freddy Lécué

About me	Motivation	Background	Composability	Composition	Optimisation	Applications	Evaluation	Conclusion

Selected Academic Contributions

	-	-	

F. Lécué and N. Mehandjiev

Seeking Quality of Web Service Composition in a Semantic Dimension In IEEE Transactions on Knowledge and Data Engineering, pages 942-959, Vol 23 No 6. 2011.

F. Lécué and N. Mehandjiev

Satisfying End User Constraints in Service Composition by Applying Stochastic Search Methods In International Journal of Web Services Research, pages 41-63, Vol 7 No 4. Idea Group. 2010

F. Lécué, A. Delteil and A. Leger

Towards a Semantic State Transition System for Automated Generation of Data Flow in Service Composition In International Journal of Semantic Computing, pages 499-526, Vol 3 No 4 December 2009

F. Lécué and A. Delteil and A. Léger

DL Reasoning and Al Planning for Web Service Composition In Web Intelligence, pages 445-453, Sydney, Australia, December 2008. (Best Paper Award).

F. Lécué and A. Delteil and A. Léger

Optimizing Causal Link-based Web Service Composition In European Conference on Artificial Intelligence, pages 45-49, Patras, Greece, July 2008.

F. Lécué and A. Delteil

Making the Difference in Semantic Web Service Composition In Ass. for the Advancement of Artificial Intelligence, pages 1383-1388, Vancouver, Canada, July 2007.

Thank you for your attention!

MANCHESTER 1824 Freddy Lécué -

Freddy Lécué - http://www.personal.mbs.ac.uk/flecue freddy.lecue@manchester.ac.uk

Freddy Lécué

Composition Model

Composition Result Modelling

Process Model as a Statechart

- Its states refer to services;
- Its transitions are labelled with semantic links;
- with basic composition constructs.

Quality Model

Quality Criteria for Semantic Links & Services

- $q(sl_{i,j})$ for Elementary Semantic Links $sl_{i,j}$
 - Common Description rate $q_{cd} \in (0, 1]$:

$$q_{cd}(sl_{i,j}) = \frac{|lcs(Out_s_i, ln_s_j)|}{|H_{\in \langle \mathcal{L}, Out_s_i, ln_s_j, \mathcal{T} \rangle}| + |lcs(Out_s_i, ln_s_j)|}$$

- Matching Quality $q_m \in (0, 1]$, valued by $Sim_T(Out_s_i, In_s_j)$ (Exact: 1, PlugIn: $\frac{3}{4}$, Subsume: $\frac{1}{2}$, Intersection: $\frac{1}{4}$).
- |.| refers to the size of \mathcal{ALE} concept descriptions:
 - $|\top|$, $|\perp|$, |A|, $|\neg A|$ and $|\exists r|$ is 1;
 - $|C \sqcap D| \doteq |C| + |D|;$
 - $|\forall r.C|$ and $|\exists r.C|$ is 1 + |C|;

• for instance $|Speed \cap \forall mBytes.1M| = 3$.

Quality Model

Quality Criteria for Semantic Links & Services

- $q(sl_{i,j})$ for Elementary Semantic Links $sl_{i,j}$
 - Common Description rate $q_{cd} \in (0, 1]$:

$$q_{cd}(sl_{i,j}) = \frac{|lcs(Out_s_i, ln_s_j)|}{|H_{\in \langle \mathcal{L}, Out_s_i, ln_s_j, \mathcal{T} \rangle}| + |lcs(Out_s_i, ln_s_j)|}$$

• Matching Quality $q_m \in (0, 1]$, valued by $Sim_T(Out_s_i, In_s_j)$ (Exact: 1, PlugIn: $\frac{3}{4}$, Subsume: $\frac{1}{2}$, Intersection: $\frac{1}{4}$).

Quality Model

Quality Criteria for Semantic Links & Services

- $q(sl_{i,j})$ for Elementary Semantic Links $sl_{i,j}$
 - Common Description rate $q_{cd} \in (0, 1]$:

$$q_{cd}(sl_{i,j}) = \frac{|lcs(Out_s_i, ln_s_j)|}{|H_{\in \langle \mathcal{L}, Out_s_i, ln_s_j, \mathcal{T} \rangle}| + |lcs(Out_s_i, ln_s_j)|}$$

 Matching Quality q_m ∈ (0, 1], valued by Sim_T(Out_s_i, In_s_j) (Exact: 1, PlugIn: ³/₄, Subsume: ¹/₂, Intersection: ¹/₄).

$q(s_i)$ for Elementary Services s_i

- Execution Price $q_{pr} \in \Re^+$;
- Response Time $q_t \in \Re^+$.

Quality Model

Quality Criteria for Semantic Links & Services

- $q(sl_{i,j})$ for Elementary Semantic Links $sl_{i,j}$
 - Common Description rate $q_{cd} \in (0, 1]$:

$$q_{cd}(sl_{i,j}) = \frac{|lcs(Out_s_i, ln_s_j)|}{|H_{\in \langle \mathcal{L}, Out_s_i, ln_s_j, \mathcal{T} \rangle}| + |lcs(Out_s_i, ln_s_j)|}$$

• Matching Quality $q_m \in (0, 1]$, valued by $Sim_T(Out_s_i, In_s_j)$ (Exact: 1, PlugIn: $\frac{3}{4}$, Subsume: $\frac{1}{2}$, Intersection: $\frac{1}{4}$).

$q(s_i)$ for Elementary Services s_i

- Execution Price $q_{pr} \in \Re^+$;
- Response Time $q_t \in \Re^+$.

QoS-extended quality vector of a semantic link *sl*_{i,j}

$$\stackrel{*}{q}(\mathit{sl}_{i,j}) \doteq (q(\mathit{s}_i), q(\mathit{sl}_{i,j}), q(\mathit{s}_j))$$

Freddy Lécué

Quality Model

Quality Criteria for Composition

Quality Aggregation Rules for Compositions

Composition	Quality Criterion					
Construct	Sem	antic	Non Functional			
Construct	Q _{cd}	Q_m	Q_t	Q _{pr}		
Sequential/ AND- Branching	$rac{1}{ s }\sum_{sl}q_{cd}(sl)$	$\prod_{sl} q_m(sl)$	$\frac{\sum_{s} q_t(s)}{\max_{s} q_t(s)}$	$\sum_{s} q_{pr}(s)$		
OR-Branching	$\sum_{sl} q_{cd}(sl).p_{sl}$	$\sum_{sl} q_m(sl).p_{sl}$	$\sum_{s} q_t(s).p_s$	$\sum_{s} q_{pr}(s).p_s$		

Quality Model

Quality Criteria for Composition

Quality Aggregation Rules for Compositions

Composition	Quality Criterion					
Construct	Semantic		Non Functional			
Ounstruct	Q _{cd}	Q_m	Q_t	Q _{pr}		
Sequential/ AND- Branching	$\frac{1}{ s }\sum_{sl}q_{cd}(sl)$	$\prod_{sl} q_m(sl)$	$\sum_{s} q_t(s)$ max _s $q_t(s)$	$\sum_{s} q_{pr}(s)$		
OR-Branching	$\sum_{sl} q_{cd}(sl).p_{sl}$	$\sum_{sl} q_m(sl).p_{sl}$	$\sum_{s} q_t(s).p_s$	$\sum_{s} q_{pr}(s).p_s$		

A Quality Vector for Web Service Composition

"A" way to differentiate compositions:

$$m{Q}(m{c}) \doteq (m{Q}_{cd}(m{c}), m{Q}_m(m{c}), m{Q}_t(m{c}), m{Q}_{
m pr}(m{c}))$$