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Motivation

e Reasoning is one key feature when using ontologies

e Reasoning means to create new knowledge by inferring facts that are implicitly
given by the existing data

e But: reasoning can still be a very time consuming task, depending on
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Linking Open ‘Data cloud diagram 2014,

by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak.

http://lod-cloud.net/
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How can the reasoning process be scaled”

Optimizing reasoning algorithms (each for a specific ontology language)
Scaling the hardware, e.g. in terms of a higher clock frequency
Scaling by parallelizing the reasoning process

_ map
input Device

\

map Cor| Device
PE
reduce > output N\ ‘ ! Comj :
Host .. PE Device

» map

m SHR-H
Cluster / MapReduce Multicore CPU/GPU

CrEDIBLE 2014 - Martin Peters 3



Related Work
Large scale parallel reasoning

e Cluster-based approaches
» Oren et al. (2009): divide-conquer-swap strategy
» Maier et al. (2010): MapReduce for EL++
» Liu et al. (2012): MapReduce for Fuzzy pD*
» WebPie (Urbani et al. 2009/2010/2012): MapReduce for RDFS and pD*

e Approaches using a single machine
» Kazakov et al. (2011): Classification of EL ontologies
» Ren et al. (2011): ABox reasoning of EL ontologies

» Urbani et al: (2013): DynamiTE: Parallel Materialization of Dynamic RDF Data
» Heino et al. (2012): RDFS reasoning on massively parallel hardware
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Large scale parallel reasoning: summary

e Current large scale reasoner:
» usually rely on a specific ontology language and area of application

» rarely make use of the highly parallel (and thus powerful) architecture of
GPUs

» provide a weak support for reasoning on single machines

e How 1o create a rule-based reasoner that makes use of single computing node
and is able to perform large scale reasoning?
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CrEDIBLE 2014 - Martin Peters 5



RETE algorithm
Implementing a rule-engine

What is the RETE algorithm??
e pattern-matching algorithm
e introduced by Charles Forgy in 1982

¢ widely used in many rule-engines as well as for semantic reasoner

e Basic steps:
1. create the RETE network

2. repeat until no new triples are derived
¢ perform the alpha-matching

e perform the beta-matching
e fire rules
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RETE algorithm

The RETE network
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RETE algorithm
alpha- and beta matching
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— (7p rdf:type rdf:Property)

(?p rdfs:domain ?c) ||— (?x rdf:type “?c)

Q2

} C @y >

aZ

(?p rdfs:domain ?c)

T1: [Bob uni:publishes Paperi]

T1 13
T2: [Alice uni:publishes Paper?2] T2
T3: [uni:publishes rdfs:domain Researcher] 13

T4: [uni:publishes rdf:type rdf:Property]
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11 13
12 13

16: [Bob rdf:itype Researcher]

17: [Alice rdf:type Researcher]
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RETE algorithm
Parallelization

e Basically two approaches, to parallelize the RETE algorithm
» data partitioning = huge amount of synchronization necessary
» rule partitioning — parallelization depends on the number of rules

e targeting modern GPUs as parallel hardware, both approaches don‘t work out
» global synchronization of data can be very expensive

» a problem needs to be break down into a high amount (e.g. millions) of small
problems that can be computed independently, thus, a high amount of
parallel threads should be executed
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RETE algorithm
Parallelization: targeting massively parallel Hardware

¢ alpha-matching

» for each input triple one thread is created that checks, if that triple matches
to one or more alpha-nodes (n triples = n threads)

e beta-matching

» one thread for each match of one of the parent-nodes, that iterates through
all matches of the second parent-node and checks for a match
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Workload partitioning

How to handle large datasets”

alpha-matching:

¢ the workload can easily be partitioned into smaller chunks that can be processed

Independently

¢ the chunk size can be chosen with respect to the target device
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Workload partitioning
beta-matching

e for beta-matching the workload cannot simply be divided
» the triple-references in the working-memories

need to be resolved @ @
» thus, all triples need to lbe available

during that step

11 12001

» this would limit the size of processable
data to the amount of triples, that 5000 9700

fit into the memory of the GPU \ /

31

A triple-match m = (s,p,0,r) is a quadruple with s=subject,
p=predicate, o=object of a triple and r=triple reference (unique number, that is
used for identification in the internal triple store).

e t0 overcome this issue, we use triple-matches:
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Workload partitioning
beta-matching |l

¢ Wworking-memories need to be transformed to triple-matches which then are
transferred to the GPU for beta-matching

» the working-memories can be divided to smaller chunks
» the transformation of the chunks can be done in parallel, too (using

multithreading)
n/3 n/3 n/3
Noarent.] matches matches matches
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Evaluation

Test environment: architecture

GPU 1

—
takes a task GPU 1 -

/ read back
queue > . results
takes‘ah ime‘t > GPU n

GPU n -
read back
f results

chunks are prepared and one thread for each GPU
submitted to the queue (each thread has exclusive
using java multithreading rights to a GPU)

CrEDIBLE 2014 - Martin Peters 14



Evaluation

Test environment: setup

e Datasets:
» Lehigh University Benchmark (LUBM): LUBM125 to LUBM8000
» DBpedia scaled to full, 1/2nd, 1/4th, 1/8th, 1/16th, and 1/32nd

e \\Norkstation with Ubuntu 12.04:
» 2.0 GHz Intel Xeon processor with 6 cores
» 64 GB memory

» two AMD 7970 gaming graphic cards
with 3GB of memory each
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Evaluation

e cvaluation of the impact of:

» using multithreading to prepare workload-chunks

» use of a second GPU
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e RDFS reasoning benefits primarily from the thread-level parallelization

e pD* reasoning benefits significantly from the second GPU
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Evaluation

Scaleability

e used Hardware: cloud-server with two Tesla M2090 GPUs and 192GB memory
e applying pdf and RDFS to LUMB datasets from 17.6M to more than 1.1B triples
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LUBM
e max throughput:

» ~ 2.7/M triples/sec. for pdf (WebPIE reported 2.1M triples/sec on 64 computing nodes)
» ~ 1.4M triples/sec. for RDFS
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Conclusion and future work

¢ we parallelized the RETE-algorithm for semantic reasoning in a way that

» the preparation of the workload can be performed in parallel using
multithreading

» the matching process can be performed on the GPU
» the workload can be distributed to multiple GPUs

e Wwe showed that large scale and rule-based reasoning (to a limited size) is
possible on a single computing node

¢ the new limitation we reached is the main-memory of the computing node itself

o future work will include:
» investigation of concepts to reduce the memory usage

» distributing the workload not only to multiple GPUSs, but also to multiple hosts
equipped with GPUs
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Thank you for your attention!

contact:

Martin Peters
martin.peters@fh-dortmund.de
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